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ABSTRACT

Concurrent vector fields in a Finsler space wemstfof all defined and studied in 1950 by Tachibd8 Concurrent
vector fields were later on studied by Matsumotd &guchi [2] and other. In 2004, Rastogi and Dwivgs], while
investigating the existence of concurrent vecteldf found that the earlier definition of concurraerector fields in a

Finsler space was not suitable and hence, they gavew definition of concurrent vector fields aliofws:
Definition 1

A vector field Xx) in a Finsler space Fin called a concurrent vector field if it satisi§) X Ay = ¢ hy, i) X' = -5},

whereg is a non-zero arbitrary scalar function of x andfy = L Cj.

The purpose of the present paper is to investitfaeroperties of concurrent vector fields by Leridative in a
Finsler space E We have also studied some properties of concusector fields in a hypersurface of a Finsler spac

following an earlier study by Rastogi [6].
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INTRODCUTION

Let F' be an n=dimensional Finsler space with metric ioncL(x,y), metric tensor;g(x,y), angular metric tenso;hand

torsion tensor Ax = L G« Rund [7]. The h- and v-covariant derivatives ofator field X are defined as Matsumoto [4]:
a. %1 =9 Xi = NjA X = X Fij, (1.1)
b. Xi1;=A; Xi- X, Cjj, (1.1)
Where Nj = Fy;, § and A; respectively denote the partial differentiatiorthmiespect to Xand y!, such that an
index 0 means contraction by unit vector i/ L™
The three curvature tensors in a Finsler spacgiaea as follows Matsumoto [4]:

Rk = Ski{ 8k Prj Frdd + Cne R, (1.2)
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Phik = &y { Ciikln + Chj Pric} (1.3)
and
Shik = &) {C i} (1.4)

Where{; denotes interchange of indices k and j and sulitraenddy = & — N A,

Let F"%, be a hypersurface of a Finsler spalaien by x= X (u*) and let B, = 8, such that y= B' ,(u) V*,

where V is the element of support of Fat . Furthermore, the metric and C-tensors '5f an be expressed as [3].
Qs = @ B' &g, Cupy = G B, (1.5)
At each point tiof F™, a unit normal vector Nu,v) is defined such that
g (x(u),y(u,v) B N’ = 0, g(x(u),y(uv))N N =1 (1.6)
If B% denotes inverse projection factor df Bhen we have 8= ¢'" 0 Bjﬁ, such that
B, B =8, B4N'=0,B,N,=0, B, B% =8, - NN, (1.7)
The induced connection parameter of Cartan corme@j satisfies [3]
iy, = B'i(B'y, +F Bl)) + Mg H,, N = B (Blo + Fo; Bly), (1.8)
C%, = BY Cj By,
Where
Mg, = Ni Cj B ,, Hg = Ni(B'og + Fo; Blg), By, = 8, B's, Blog = B, g V° (1.9)
Further, the second fundamertiisors are given by [3] and satisfy
Hg, = Ni (B, + Fix BIg) + My H,,, M = N, C| Bly N¥. (1.10)
B'alp = Hyg N', Byl = My 5 N', N'lg = - H'; B, N'lg = - M% B, (1.11)
Concurrent Vector Fields in F'
Let X; be an arbitrary covariant vector field, then foe tnfinitesimal transformation of the type
X =X +V(x) d, (2.1)
The Lie- derivative of the vector field, an be expressed as follows Rund [7]:
EX = XV + VX + (g X)) (VYK (22)
Let X; be a concurrent vector field ifl,Fhen from equation (.2), we can obtain
£X = -v + VI, X, (2.3)

If we assume that £X 0, equation (2.3) givesly X, = v; Conversely, if VI X, = v, and Xis a concurrent vector
field in F", £X;= 0. Hence we have:

Theorem 2.1: The Lie=derivative of a concurrent vector fielduXin F' vanishes if and only if jvsatisfies
equation (2.1) and'M X, = v
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Some Properties of Concurrent Vector Fieldsin a Hypersurface of a Finder Space 3
Remarks 1: By taking h-covariant derivative of the product, {¥X) we can easily obtain that this product is h-
covariantly constant.

By taking v-covariant differentiation of the produg, V'), we can easily obtain that this product is also v

covariantly constant.

From equation ¥, X; = «, we can obtain'V; + vl; which gives X(V'l;; - Vl;;) = 0. Substituting the value of(y

i —V1;i), we can obtain on simplification
X V'R mij — @ Rmij (Vm— \le) =0 (24)
Hence we have:

Theorem 2.2:The sufficient condition for the vector fieldf to satisfy the equation (2.4) is given by vanighirf

Lie-derivative of the vector field X

Let V' be a concurrent vector field iff End let X be a function of x alone, then equation (2.2) ig®EX = X; |

vk — X;. Hence we have:

Theorem 2.3:1f v" is a concurrent vector field il &nd X is a function of x alone, the Lie-drivative of thector

field X; will vanish if and only if X1 V=X,

Theorem 2.4:1f v is a concurrent vector field in"@nd X is a function of x alone such that its Lie-derivat
vanishes, then the vector field 3atisfies X (R’ im — Cir R'm) = 0.

If in equation (2.1), vector field™is replaced by ¥ equation (2.2) leads to  £X(X;«+ X« I }) XX In addition
to this if X; is a concurrent vector field, we can obtain £X2 X. Hence we have:

Theorem 2.5:1f x' = X + X/(x) dh, is the infinitesimal transformation and X a concurrent vector field them its
Lie-derivative satisfies £X¢ -2 X.

From equation £X= -2 X, we can easily obtain (£)X; = £(0X 1)),
Hence we have:

Corollary 1: A concurrent vector field Xsatisfying infinitesimal transformatior x X + X'(x) di, also satisfies

Taking v=covariant derivative of ¥; X, = v;,, we can get
Capfv I 1 X =V IiL o h}=0 (2.5)
Which on simplification leads to?

Cap{L oI ihg = vi1i) + V" X (C' mj1i— Pn} = 0. (2.6)
In a Finsler space"Rwith vanishing second curvature tensor Kawaguthigquation (2.6) leads to
Vi= V" I+ L (ol ™ @ VI H; = 0. (2.7)

Hence we have:
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Theorem 2.6: If the Lie-derivative of the concurrent vector fleX, vanishes in the Finsler spacé Wwith
vanishing second curvature tensgpPthe vector ysatisfies (2.7).

It is known thatAm (EX) - £ Am Xi) = V(F" mc An Xi — X Am F), therefore for a concurrent vector fielg e

can establish:

Theorem 2.7 A vector field X(x) with infinitesimal transformation'x X + V (x) di, satisfiesA, (EX) = - V* X,
Am Fi.

It is known that (EXI m = Cim ¢ X; — W XpAmFand £0% 1 ) = -£ (% C'im), therefore, we can also establish.

Theorem 2.8:A concurrent vector field @with infinitesimal transformation'x X' + V(x) dt, satisfies (EX I, -
£(Xi I m) = (£Xr)Crim - \/ Xh Am I:hir"' Him&P - (PE hm.

Lie—Transformation in F"

Definition 3.1: Let X;(x) be a covariant vector field iff Fwhich is transformed to another vector fielgl tken the

transformation given by
X; = X+ £X; (31)
Shall be called Lie- transformation of a vectotdie

Since we know that £¢/') = £X, therefore on substituting the value of Lie-detiias of X and ¢, we get on

simplification X C‘jrvﬂ. K yk =0, which for a concurrent vector field gives
Theorem 3.1:If X{(x) is a concurrent vector field in a Finsler spatethe vector field v satisfieg i = Vi ol; I.
It is known that 4; & — & A)Xp = -(4 NX) Ax Xp and since X, = 0, therefore from equation (3.1) we can obtain
(A8 A)(Xp-£%) =0 (3.2)
Hence we have:

Theorem 3.2: A vector field X(x), satisfying Lie-transformation also satisfieguation Taking h-covariant

derivative of equation (3.1), we can obtain
Xil = X i+ X L Vo X+ VI + VT X+ VX +HAR X) 10T YE+(AR X)) VI Ty (3.3)

If we assume that vector field ¥ a concurrent vector field iff Fequation (3.3) on simplification givés;;(X; I ;

=V Il X;) = 0, which on further simplification leads to
CapXi 1)) = X V" Riij = RTj(vin =V 5 1)} = 0 (3.4)
If {,)(Xi 1;) = 0, equation (3.4) gives (2.4), Hence we have:

Theorem 3.3: The necessary and sufficient condition for the waciant derivative of Lie-transformation of a

concurrent vector field @o be symmetric is the vector field ¥atisfies equation (2.4).
Taking v-covariant derivative of equation (3.1) assuming Xto be a concurrent vector field, we can obtain

Xr(Vm prmij -V m Cmij -V mpmij + VM i Crmi V" i Crmi) =0 (35)
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which yields
Theorem 3.4:A concurrent vector field Xsatisfying Lie-transformation also satisfies e@mma(3.5).

Taking h-covariant derivative of; X ; and h-covariant derivative of; X and simplifying the subtraction, after

some lengthy calculation we obtain
2Cijk_ Vr ” iCrkj— Vk ” | ”J = Xr {Prijk + C’ik ”j+ cmka MJ - Fﬁjk Crih + \/m ” | (pmjk + thk” ])} (36)
Hence we have:

Theorem 3.6:In a Finsler space"Fif a concurrent vector field satisfies equation (3.1), curvature tensg P

satisfies equation (3.6).

Taking v-covariant derivative of;X; finding X; I 1 I; = X; I « I; and taking cyclic summation in i,j,k, we obtain

on simplification
2 isofv "(A) Fim - A Fim)} = 0. (3.7)
Hence we have:

Theorem 3.7:1In a Finsler space"Fif a concurrent vector field Xsatisfies equation (3.1), the connection

parameter fj satisfies equation (3.7).
Concurent Vector Fields in F*
Let X; be a concurrent vector field iff Bnd let a point of F, it is written as
Xioy = Xo B + 0 N; 4.1)

Where X, = X; B', it = X; Ni. It is known that 8/ = B (8/8 V), (8/8V) B', = 0, therefore from the fact that i
a function of x and equation (4.1), we can obthat (8/8V) X, = 0. Hence Xis a function of coordinate u only. We know
that X, 5 = Xil s B, + X; By |, therefore, substituting from equation (1.11), g& X, | 3 = X; | 5 B, + u H, 5. Further

substituting from XI 5 = X; | ; N' Hg, we can obtain on simplification.
Xolp=-0p+ 1 He (4.2)
Hence we have:

Theorem 4.1:The necessary and sufficient condition for the congmt X, in F"lo f concurrent vector field
Xi(x) in F" to be the component of a concurrent vector figl&"i*, is that either Xis tangential to the hyper-surfac®’for

H,s, the h-fundamental tensor ot Fvanishes.
If H,s= 0, we can obtain
N; (B's, + Fix Blg) =-Mg H, (4.3)
Thus we have:

Corollary 2: If the vector X is not tangential to the hyper-surface’ Fvectors X B', g, on simplification we can
obtain with the help of equations (1.5), (1.7) &hd)

Xo C'py = Lt hg, — 1 Mg, (4.4)
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It can also be observed that if % a concurrent vector field i E then

Xa Cyy = (L) w by, (4.5)
Where L andy are terms defined in", similar to L andp of F".

Comparing equations (4.3) and (4.4), we can obghate

(L o-()"w) hg, = p My, (4.6)
Hence we have:

Theorem 4.2:The necessary and sufficient condition fqraxid X,, to b concurrent n"Fand F* respectively is

that v-fundamental tensor is proportional to angmatric tensor in .

kind.

It is known that for a hyper-plane of third kin8*FMatsumoto [3], Hgand M, vanish, which leads to

Theorem 4.3:1f X;is a concurrent vector field i FX, will be a concurrent vector field in a hyper-plasfethird

Differentiating equation (4.2) covariantly with pest to ), w get on simplification

Xalgly = Xo 1yl = p(Hog 1y -Hey g) + 1l Hyg— 11 g Hog (4.7)
Substituting the value of left hand side in (4w, get

(Haply = Hoy 1) + 1l Hog =g Hog + X5 R 4, - Xo € 45 R, = 0

Which for a concurrent vector field,¥n F"* leads to?

WHeg 1y - Hy lg) +uly Hpg—pipHp =0 (4.8)
Conversely, if equation (4.8) is satisfied, equati4.7) leads to

XERSaBy*' L™ v hys RBﬁVZO (4.9)
Hence we have:

Theorem 4.4:If X, is a concurrent vector field in"E it is necessary condition that second fundamestaor

H,; satisfies (4.8), conversely, if equation (4.83asisfied, it is sufficient that concurrent veclietd X, satisfies (4.9).

Since X, 1= X1 B', B)3+X; B\, I 4, therefore on simplification we get
(4.10) X, lp=-L"¢ hy+p Mg,
Which leads to?

Theorem 4.5:1f X;is a concurrent vector field i FX, will be concurrent vector field in"#, if and only if L* ¢

= ()™ v and eithep = 0, i.e, X is tangential to the hyper-surfac&'for Mg = 0.

From equation (4.10), we can obtaipl§ I, - X, 1,5 = L™ (y I s hy, —w I, h, 5), which on simplification leads to
LM (wlghy —w i, hyg) + Xy S 45, =0 (4.11)

Hence we have:
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Theorem 4.6:1f X; is a concurrent vector field in"FX, will be a concurrent vector field in"& if and only if
curvature tensor"gﬁy satisfies equation (4.11).

If X, is a concurrent vector field if'E then from X I 5 = -g,5, We can obtain Xl 1, - X, 1, 15=Xe 15 C'y, + X

C’,, 15, which on simplification leads to
Xo (P opy +C' oy 15 - Cog P') = 2 Gy (4.12)
Hence we have:
Theorem 4.7:If X, is a concurrent vector field if'& curvature tensor eEzﬁy satisfies equation (4.12).
Lie-Derivative in F™*
Taking Lie-derivative of the relation¢ X; B' ,and using ti= u* + w’(u)di, we can obtain
Xo 1,V 1, Xy = (Xl V' + VI X5) B, (5.1)
Which for concurrent vector fields; ¥nd X, leads to?
(Vi V9 Xp) By = - wy + W, X, (5.2)
Hence we have:
Theorem 5.1:1f X; and X, are respectively concurrent vector fields fraRd F, they satisfy equation (5.2).
Since X N' = u, therefore for a concurrent vector fielghie can easily obtain
£ =X £ N(-v + VI, Xp), (5.3)
which implies

Theorem 5.2:1f X, is a concurrent vector field satisfying X' = p, the Lie-derivative of the scalaris given by

equation (5.3).
If in particular, we replace vector field v by Xguation (5.2), on simplification gives
Xo = (12)(W, - W'l X)), (5.4
Which implies?

Corollary 3: If X; and X, are respectively concurrent vector fields ih &hd F* and satisfy coordinate
transformations'x= X + X'(x) cv and ¢ + w*(u)d, then the vector field Xsatisfies (5.4).

Replacing vby X n equation (5.3), we get

Corollary 4: A concurrent vector field Xin F' satisfying coordinate transformatiohx X + X' (x) di, also
satisfies fii = X £ N — 2.
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