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ABSTRACT 

Concurrent vector fields in a Finsler space were first of all defined and studied in 1950 by Tachibana [8]. Concurrent 

vector fields were later on studied by Matsumoto and Eguchi [2] and other. In 2004, Rastogi and Dwivedi [5], while 

investigating the existence of concurrent vector fields found that the earlier definition of concurrent vector fields in a 

Finsler space was not suitable and hence, they gave a new definition of concurrent vector fields as follows: 

Definition 1 

A vector field Xi(x) in a Finsler space Fn in called a concurrent vector field if it satisfies i) Xi Aijk = φ hjk, ii) X
i
ǁ j = -δi

j, 

where φ is a non-zero arbitrary scalar function of x and y, Aijk = L Cijk. 

The purpose of the present paper is to investigate the properties of concurrent vector fields by Lie-derivative in a 

Finsler space Fn. We have also studied some properties of concurrent vector fields in a hypersurface of a Finsler space 

following an earlier study by Rastogi [6]. 
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INTRODCUTION 

Let Fn be an n=dimensional Finsler space with metric function L(x,y), metric tensor gi j(x,y), angular metric tensor hi j and 

torsion tensor Ai j k = L Ci j k Rund [7]. The h- and v-covariant derivatives of a vector field Xi are defined as Matsumoto [4]: 

a. Xi ǁ j = ðj Xi – Nr
j ∆r X i – Xr F

r
i j,           (1.1) 

b. Xi ǁ j = ∆j Xi- X r C ri j,            (1.1) 

Where Nr
j = Fr

oj, ðj and ∆j respectively denote the partial differentiation with respect to Xj and y j, such that an 

index 0 means contraction by unit vector li = yi L-1. 

The three curvature tensors in a Finsler space are given as follows Matsumoto [4]: 

Ri
hjk = ζ(k,j){ δk F

i
hj F

i
rk} + Ci

hr R
r
jk,           (1.2) 
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Phijk = ζ(h,i) { C jikǁh + Cr
hj Prik}            (1.3) 

and 

Shijk = ζ((k,j) {C
r
hkCri j},            (1.4) 

Where ζ(k,j) denotes interchange of indices k and j and subtraction and δk = ðk – Nr
k ∆r.  

Let Fn-1, be a hypersurface of a Finsler space Fn given by xi = xi (uά) and let Bi
ά = ðuά, such that yi = Bi ά(u) vά, 

where vά is the element of support of Fn-1 at uά. Furthermore, the metric and C-tensors of Fn-1 can be expressed as [3]. 

gάβ = gij B
i ά

j
β, Cαβγ = Cijk B

i
α
j
β
k
γ             (1.5) 

At each point uα of Fn-1, a unit normal vector Ni (u,v) is defined such that  

gij(x(u),y(u,v) Bi αN
j = 0, gij(x(u),y(u,v))Ni Nj = 1         (1.6) 

If Bα
i denotes inverse projection factor of Bi

 α, then we have Bαi = gα β gij B
j
β, such that 

Bi
α B

β
i = δβα B

α
i N

i = 0, Bi
α Ni = 0, Bi

α B
α
j = δi

j – Ni Nj           (1.7) 

The induced connection parameter of Cartan connection C, satisfies [3] 

Fαβγ = Bαi(B
i
βγ +Fi

jk B
j
β
k
γ) + Mα

 β H γ, N
α
β = Bα i(B

i
0β + Fi

0 j B
j
β),        (1.8) 

Cαβγ = Bαi C
i
jk B

j
β
k
γ 

Where 

 Mβγ = Ni C
i
jk B

j
β
k
γ, Hβ = Ni(B

i
0β + Fi

0j B
j
β), B

i
βγ = ðγ B

i
β, B

i
0β = Bi

α β V
α         (1.9) 

Further, the second fundamental tensors are given by [3] and satisfy 

Hβγ = Ni (B
i
βγ + Fi

jk B
j
β
k
γ) + Mβ H γ, Mβ = Ni C

i
j k B

j
β N

k.      (1.10) 

Bi
αǁβ = Hαβ N

i, Bi
αǁ β = Mα β N

i, Ni
ǁβ = - Hαβ B

i
α, N

i
ǁβ = - Mα

β B
i
α       (1.11) 

Concurrent Vector Fields in Fn 

Let Xi be an arbitrary covariant vector field, then for the infinitesimal transformation of the type 

xi = xi + vi(x) dι,             (2.1) 

The Lie- derivative of the vector field Xi can be expressed as follows Rund [7]: 

£Xi = Xi ǁ kV
k + Vr

ǁ iXr + (∆h Xi) (v
h
ǁ k)y

k             (2.2) 

Let Xi be a concurrent vector field in Fn, then from equation (.2), we can obtain  

£Xi = -vi + vr
ǁ I Xr               (2.3) 

If we assume that £Xi = 0, equation (2.3) gives vr
ǁ I Xr = vi. Conversely, if vr ǁ Xr = vi and Xi is a concurrent vector 

field in Fn, £Xi = 0. Hence we have: 

Theorem 2.1: The Lie=derivative of a concurrent vector field Xi(x) in Fn vanishes if and only if vi satisfies 

equation (2.1) and vr
ǁ I Xr = vi. 
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Remarks 1: By taking h-covariant derivative of the product (Xr V
r) we can easily obtain that this product is h-

covariantly constant. 

By taking v-covariant differentiation of the product (Xr Vr), we can easily obtain that this product is also v-

covariantly constant. 

 From equation vrǁ I Xr = vi, we can obtain vr ǁ i + viǁ j which gives Xr (v
r
ǁi j - v

r
ǁj I ) = 0. Substituting the value of (vr ǁi 

j – vr 
ǁ j i), we can obtain on simplification 

Xr v
m Rr

 mij – φ Rm
ij (vm – vp

 lm) = 0           (2.4)  

Hence we have: 

Theorem 2.2: The sufficient condition for the vector field vk to satisfy the equation (2.4) is given by vanishing of 

Lie-derivative of the vector field Xi. 

 Let vh be a concurrent vector field in Fn and let Xi be a function of x alone, then equation (2.2) implies £Xi = Xi ǁ k 

vk – Xi. Hence we have: 

Theorem 2.3: If vh is a concurrent vector field in Fn and Xi is a function of x alone, the Lie-drivative of the vector 

field Xi will vanish if and only if Xi ǁ k v
k = Xi. 

Theorem 2.4: If vh is a concurrent vector field in Fn and Xi is a function of x alone such that its Lie-derivative 

vanishes, then the vector field Xi satisfies Xp (R
p ikm – Cp

ir R
r
km) = 0. 

If in equation (2.1), vector field vh is replaced by Xh, equation (2.2) leads to     £ Xi = (Xi ǁ k + Xk ǁ i) X
k. In addition 

to this if Xi is a concurrent vector field, we can obtain £Xi = -2 Xi. Hence we have: 

Theorem 2.5: If x i = xi + Xi(x) dι, is the infinitesimal transformation and Xi is a concurrent vector field them its 

Lie-derivative satisfies £Xi = -2 Xi. 

 From equation £Xi = -2 Xi, we can easily obtain (£Xi)ǁ j = £(Xi ǁ j),  

Hence we have: 

Corollary 1:  A concurrent vector field Xi satisfying infinitesimal transformation xi = xi + Xi(x) dι, also satisfies 

(£Xi) ǁ j = £(Xiǁ j). 

 Taking v=covariant derivative of vr ǁ i Xr = vi,, we can get  

ζ (i,j){v
r ǁ I ǁ j Xr – vr ǁ i L

-1 φ hrj} = 0           (2.5) 

Which on simplification leads to? 

 ζ (i,j) {L
-1 
φ(vr

ǁ i hrj – vj ǁ i) + vm Xr (C
r 

mj ǁ i – pr
mij} = 0.        (2.6) 

In a Finsler space Fn with vanishing second curvature tensor Kawaguchi [1], equation (2.6) leads to 

vi – vm li lm + L (φǁo)
-1 φ lr v

r
ǁj h

j
i = 0.          (2.7) 

Hence we have: 
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Theorem 2.6: If the Lie-derivative of the concurrent vector field Xr vanishes in the Finsler space Fn with 

vanishing second curvature tensor Pkjih, the vector vi satisfies (2.7). 

 It is known that ∆m (£Xi) - £ (∆m Xi) = vk (Fh mk ∆h Xi – Xh ∆m Fh
ik), therefore for a concurrent vector field Xi, we 

can establish: 

Theorem 2.7: A vector field Xi(x) with infinitesimal transformation xi = xi + vi (x) dι, satisfies ∆m (£Xi) = - vk Xh 

∆m Fh
ik.  

 It is known that (£Xi)ǁ m = Cr
i m φ Xr – vr Xh ∆m F

h
i and £(Xi ǁ m) = -£ (Xr C

r
i m), therefore, we can also establish. 

Theorem 2.8: A concurrent vector field Xi with infinitesimal transformation xi = X
i + vi(x) dι, satisfies (£Xi) ǁm - 

£(Xi ǁ m) = (£Xr)C
r
im – vr Xh ∆m Fh

i r + Him £φ - φ£ him. 

Lie–Transformation in F n 

Definition 3.1: Let Xi(x) be a covariant vector field in Fn, which is transformed to another vector field Xi, then the 

transformation given by  

X i = Xi + £Xi               (3.1) 

Shall be called Lie- transformation of a vector field. 

 Since we know that £(Xi g
i j) = £Xi, therefore on substituting the value of Lie-derivatives of Xi and gij, we get on 

simplification Xi C
i
jr v

r
ǁ k y

k =0, which for a concurrent vector field gives 

Theorem 3.1: If X i(x) is a concurrent vector field in a Finsler space Fn, the vector field v satisfies vj ǁ o = vr
ǁ 0 l j lr. 

 It is known that (∆j δi – δi ∆j)Xp = -(∆j N
k
i) ∆k Xp and since ∆k Xp = 0, therefore from equation (3.1) we can obtain 

 (∆j δi ∆j)(Xp - £ Xp) = 0            (3.2) 

Hence we have: 

Theorem 3.2: A vector field Xi(x), satisfying Lie-transformation also satisfies equation Taking h-covariant 

derivative of equation (3.1), we can obtain 

X iǁ j = Xi ǁ j + Xi ǁ r ǁ j v
r + Xi ǁ r + vr

ǁ j + vr
ǁ i ǁ j Xr + vr ǁ i Xrǁ j +(∆h Xi) ǁ j(v

h 
ǁ k) y

k +(∆h Xi) v
h
ǁ k ǁ j y

k  (3.3) 

If we assume that vector field Xi is a concurrent vector field in Fn, equation (3.3) on simplification gives ζ (i,j)(X i ǁ j 

– vr ǁ i ǁ j Xr) = 0, which on further simplification leads to  

ζ(i,j)(X i ǁ j) – {X r v
m Rr

mij – φ Rm
ij(vm –vp lp lm)} = 0         (3.4) 

If ζ (i,j)(X i ǁ j) = 0, equation (3.4) gives (2.4), Hence we have: 

Theorem 3.3: The necessary and sufficient condition for the h-covariant derivative of Lie-transformation of a 

concurrent vector field Xi to be symmetric is the vector field Xi satisfies equation (2.4). 

 Taking v-covariant derivative of equation (3.1) and assuming Xi to be a concurrent vector field, we can obtain 

Xr(v
m pr

mij – vr ǁ m Cm
ij – vr ǁ m p

m
ij + vm

ǁ i C
r
mi – vm ǁ j C

r
mi) = 0        (3.5) 
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which yields 

Theorem 3.4: A concurrent vector field Xi, satisfying Lie-transformation also satisfies equation (3.5). 

 Taking h-covariant derivative of Xi ǁ j and h-covariant derivative of Xi ǁ k and simplifying the subtraction, after 

some lengthy calculation we obtain 

2Cijk – vr 
ǁ i C

r
kj – vk ǁ I ǁ j = Xr {P

r
ijk + Cr

ik ǁ j + Cr
mk v

m 
ǁiǁ j - P

h
jk C

r
ih + vm ǁ I (P

r
mjk + Cm

hkǁ j)}     (3.6) 

Hence we have: 

Theorem 3.6: In a Finsler space Fn, if a concurrent vector field Xi satisfies equation (3.1), curvature tensor Pr
ijk 

satisfies equation (3.6). 

 Taking v-covariant derivative of Xi ǁ j, finding Xi ǁ j ǁ k ǁ j – Xi ǁ k ǁ j and taking cyclic summation in i,j,k, we obtain 

on simplification 

Σ (i,j,k){v
m(∆j F

r
im - ∆i F

r
jm)} = 0.           (3.7) 

Hence we have: 

Theorem 3.7: In a Finsler space Fn, if a concurrent vector field Xi satisfies equation (3.1), the connection 

parameter Frij satisfies equation (3.7). 

Concurent Vector Fields in Fn-1 

Let Xi be a concurrent vector field in Fn and let a point of Fn-1, it is written as 

X i(x) = Xα B
α
i + µ Ni              (4.1) 

Where Xα = Xi B
i
α µ = Xi Ni. It is known that ð/ðv

β = Bj
β (ð/ð yi), (ð/ðvβ) Bi

α = 0, therefore from the fact that Xi is 

a function of x and equation (4.1), we can obtain that (ð/ðvβ) Xα = 0. Hence Xα is a function of coordinate u only. We know 

that Xα ǁ β = Xiǁ β B
i
α + Xi B

i
α ǁ β, therefore, substituting from equation (1.11), we get Xα ǁ β = Xi ǁ β B

i
α + µ Hα β. Further 

substituting from Xi ǁ β = Xi ǁ j N
j Hβ, we can obtain on simplification. 

Xα ǁ β = -gα β + µ Hαβ              (4.2) 

Hence we have: 

Theorem 4.1: The necessary and sufficient condition for the component Xα(u) in Fn-1o f concurrent vector field 

X i(x) in Fn to be the component of a concurrent vector field in Fn-1, is that either Xi is tangential to the hyper-surface Fn-1 or 

Hαβ, the h-fundamental tensor of Fn-1 vanishes. 

If Hαβ = 0, we can obtain 

Ni (B
i
βγ + Fi

jk B
j
β
k
γ) = -Mβ H γ             (4.3) 

Thus we have: 

Corollary 2:  If the vector Xi is not tangential to the hyper-surface Fn-1, vectors Xi B
i
α ǁ β, on simplification we can 

obtain with the help of equations (1.5), (1.7) and (4.1)  

Xα C
α
βγ = L-1 φ hβγ – µ Mβγ              (4.4) 
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It can also be observed that if Xα is a concurrent vector field in Fn-1, then 

Xα C
α
βγ = (L)-1 ψ hβγ              (4.5) 

Where L and ψ are terms defined in Fn-1, similar to L and φ of Fn. 

Comparing equations (4.3) and (4.4), we can observe that  

 (L-1
φ-(l)-1

ψ) hβ γ = µ Mβγ              (4.6) 

Hence we have: 

Theorem 4.2: The necessary and sufficient condition for Xi and Xα, to b concurrent n Fn and Fn-1 respectively is 

that v-fundamental tensor is proportional to angular metric tensor in Fn-1. 

 It is known that for a hyper-plane of third kind Fn-1, Matsumoto [3], Hα β and Mα β vanish, which leads to 

Theorem 4.3: If X i is a concurrent vector field in Fn, Xα, will be a concurrent vector field in a hyper-plane of third 

kind. 

 Differentiating equation (4.2) covariantly with respect to uγ, w get on simplification  

Xα ǁ β ǁ γ - Xα ǁ γ ǁ β = µ(Hαβ ǁ γ -Hαγ ǁ β) + µ ǁ γ Hαβ – µ ǁ β Hαβ          (4.7) 

Substituting the value of left hand side in (4.7), we get  

 µ (Hαβǁ γ - Hαγ ǁ β) + µ ǁ γ Hαβ – µ ǁ β Hαβ + Xδ R
δ
 αβγ - Xθ C

θ
 αδ R

δ
 βγ = 0 

Which for a concurrent vector field Xα in Fn-1 leads to?   

µ(Hαβ ǁ γ - Hαγ ǁ β) + µ ǁ γ Hαβ – µ ǁ β Hαβ = 0          (4.8) 

Conversely, if equation (4.8) is satisfied, equation (4.7) leads to  

Xδ R
δ
 αβγ + L-1 ψ hα δ R

δ
 βγ = 0           (4.9) 

Hence we have: 

Theorem 4.4: If X α is a concurrent vector field in Fn-1, it is necessary condition that second fundamental tensor 

Hαβ satisfies (4.8), conversely, if equation (4.8) is satisfied, it is sufficient that concurrent vector field Xα satisfies (4.9). 

Since Xα ǁ β = Xi ǁ j B
i
 α B

j
β +Xi B

i
α ǁ β, therefore on simplification we get 

(4.10) Xα ǁ β = - L-1 φ hαβ + µ Mαβ, 

Which leads to?  

Theorem 4.5: If X i is a concurrent vector field in Fn, Xα will be concurrent vector field in Fn-1, if and only if L-1 φ 

= (L)-1 ψ and either µ = 0, i.e, Xi is tangential to the hyper-surface Fn-1 or Mαβ = 0. 

From equation (4.10), we can obtain Xα ǁ β ǁ γ - Xα ǁ γ β = L-1 (ψ ǁ β hα γ – ψ ǁ γ hα β), which on simplification leads to  

L-1 (ψ ǁ β hαγ – ψ ǁ γ hαβ) + Xθ S
θ
 αβγ = 0        (4.11) 

Hence we have: 
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Theorem 4.6: If X i is a concurrent vector field in Fn, Xα will be a concurrent vector field in Fn-1, if and only if 

curvature tensor Sθ αβγ satisfies equation (4.11). 

If X α is a concurrent vector field in Fn-1, then from Xα ǁ β = -gαβ, we can obtain Xα ǁ β ǁ γ - Xα ǁ γ ǁ β = Xθ ǁ β C
θ
 αγ + Xθ 

Cθ αγ ǁ β, which on simplification leads to 

Xθ (P
θ
 αβγ +Cθ αγ ǁ β - C

θ
αφ P

φ
 βγ) = 2 Cαβγ         (4.12) 

Hence we have: 

Theorem 4.7: If X θ is a concurrent vector field in Fn-1, curvature tensor  Pθ αβγ satisfies equation (4.12). 

Lie-Derivative in Fn-1 

Taking Lie-derivative of the relation Xα = Xi B
i
 α and using uα = uα + wα(u)dι, we can obtain 

Xα ǁ γ v
γ ǁ α X γ = (Xiǁj v

j + vj
ǁI Xj) B

i
α            (5.1) 

Which for concurrent vector fields Xi and Xα leads to?  

 (-vi +vk
ǁ j Xk) B

i
α = - wα + wγ ǁ α Xγ             (5.2) 

Hence we have: 

Theorem 5.1: If X i and Xα are respectively concurrent vector fields in Fn and Fn-1, they satisfy equation (5.2). 

 Since Xi N
i = µ, therefore for a concurrent vector field Xi we can easily obtain  

£ µ = Xi £ Ni(-vi + vk
ǁ I Xk),           (5.3) 

which implies 

Theorem 5.2: If X i is a concurrent vector field satisfying Xi N
i = µ, the Lie-derivative of the scalar µ is given by 

equation (5.3). 

 If in particular, we replace vector field v by X, equation (5.2), on simplification gives 

Xα = (1/2)(wα - w
γ 
ǁ α Xγ),            (5.4) 

Which implies? 

Corollary 3:  If X i and Xα are respectively concurrent vector fields in Fn and Fn-1 and satisfy coordinate 

transformations xi = xi + Xi(x) dι and uα + wα(u)dι, then the vector field Xα satisfies (5.4). 

 Replacing vi by Xi n equation (5.3), we get 

Corollary 4:  A concurrent vector field Xi in Fn satisfying coordinate transformation xi = xi + XI (x) dι, also 

satisfies £ µ = Xi £ Ni – 2 µ. 
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